Sealing, Caulk and Vapor Barrier

Although all possible measures have been taken to insure the accuracy of the material presented, WIXSYS, and the author are not liable and do not assume any liability in case of misinterpretation of directions, misapplication, improper installation, or typographical error. Pictures and Diagrams are meant to represent typical situations and are for guidance. Actual product dimensions, representations and specifications are to be supplied by the manufacturer.
Details of Proper Caulking

What is the difference between caulks and sealants? They are in essence interchangeable terms. Literally, caulking is a soft, putty-like material for sealing joints where leakage or movement may occur, and sealants are compounds used to fill and seal a joint where movement or leakage is expected.

With all the different types of materials that need to be caulked or sealed, it’s difficult to choose among the variety of brands and types of sealants. To best decide which type of caulk or sealant will work best, it is better to look first at what caulks are supposed to do, and why most sealant failures occur. It’s important to know what properties a caulk will need to perform in a particular installation of a window or door. In simple terms, caulks are supposed to seal a joint between two materials so that air and moisture cannot penetrate the joint and this joint must stay sealed under variable weather conditions and even if the two materials move. Therefore, caulks must stick to the two surfaces, have elasticity to withstand movement, and must not deteriorate due to the environment.

Caulks and sealants fail because they don’t stick, won’t move, or they dry out, crack, or shrink. The major considerations are Material Movement and Joint Design. The two materials being joined are subject to expansion and contraction due to temperature and moisture changes, and there may be movement due to use. It is necessary to design a joint that allows the movement without overtaxing the elasticity of the caulk.

The included charts show some varieties of materials used to make caulks and sealants.

Some basic guidelines to follow:

1. **Oil based Butyls and Acrylics** will flex about 10% of their length. Add the movement of the joined materials and multiply by 10 for maximum joint width.

2. **Polysulfides and Polyurethanes** expand about 25%. Add the movement of the materials and multiply by 4 for joint width.

3. **Low and medium modulus Silicones** expand about 50%. Twice the material movement is a safe joint width.
What is the difference between caulks and sealants? They are in essence interchangeable terms. Literally, caulking is a soft, putty-like material for sealing joints where leakage or movement may occur, and sealants are compounds used to fill and seal a joint where movement or leakage is expected.

For ease of discussion and planning, there are 5 Basic types of applications where sealant is used for window replacement and retrofit applications:

1. **Cavity spaces - Control joints** are used between the old frame and the window, with backer rod and 1/4” minimum spaces
2. **Cavity Spaces - bonding joint** with minimum 1/4” depth
3. **Shallow Adjacent components** - Bond breaker tape and a rounded bead
4. **Adhesive** - Bedding joint between flat surfaces

And there are 2 Sealant Responsibilities -
- **Primary** - Principle barrier to air and water migration into or between space between components
- **Secondary** - Control of moisture and air into and out of cavities

Sealants are never meant to join two materials in any structural way. Sealants need to support the elements of proper water and moisture management: Divert; Drain; and Dry.

COMPARISON CHART

<table>
<thead>
<tr>
<th>TYPE OF CAULK/SEALANT</th>
<th>TYPICAL SERVICE LIFE (Years)</th>
<th>MAX. JOINT WIDTH (inch)</th>
<th>EASE OF APPLY</th>
<th>APPROXIMATE DRYING TIME</th>
<th>FLEXIBILITY (Max. Joint Movement)</th>
<th>APPLY TEMP RANGE (°F)</th>
<th>SERVICE TEMP RANGE (°F)</th>
<th>ADHESION TO SUBSTRATES*</th>
<th>RESISTANCE TO</th>
<th>U/V</th>
<th>OXIDATION</th>
<th>WATER</th>
<th>ABRASION</th>
<th>FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIL-BASED</td>
<td>1-2 Ext 10 Int</td>
<td>1/4 -1/2</td>
<td>Very Easy</td>
<td>1-2 Days</td>
<td>Up to 1 Year</td>
<td>Very Low ≤1%</td>
<td>5% - 10%</td>
<td>>40</td>
<td>Fair to Good</td>
<td>P-F</td>
<td>P-F</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>LATEX (Polyvinyl Acetate or Vinyl)</td>
<td>3-5+</td>
<td>3/8</td>
<td>Very Easy</td>
<td>15-30 Minutes</td>
<td>5 Days</td>
<td>Very Low ≤2%</td>
<td>5% - 10%</td>
<td>>40</td>
<td>Fair to Good</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>ACRYLIC LATEX</td>
<td>3-10</td>
<td>3/8</td>
<td>Very Easy</td>
<td>15-30 Minutes</td>
<td>5 Days</td>
<td>Very Low ≤2%</td>
<td>5% - 10%</td>
<td>>40</td>
<td>Fair to Good</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>P-F</td>
<td>Yes</td>
</tr>
<tr>
<td>BUTYL</td>
<td>4-10</td>
<td>1/2</td>
<td>Easy</td>
<td>2-72 Hours</td>
<td>5 Days</td>
<td>Low</td>
<td>10% - 35%</td>
<td>>40</td>
<td>20 to 200</td>
<td>F-G</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>SMP-(Silyl Modified Polymer)</td>
<td>20-30</td>
<td>5/8</td>
<td>Easy</td>
<td>20-30 Minutes</td>
<td>1-3 Days</td>
<td>Very High ≤50%</td>
<td>N/A</td>
<td>>40</td>
<td>Excellent</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>SILICONIZED ACRYLIC LATEX</td>
<td>20-30</td>
<td>1/2</td>
<td>Easy</td>
<td>2 Hours</td>
<td>5 Days</td>
<td>Medium ≤25%</td>
<td>5% - 10%</td>
<td>>40</td>
<td>20 to 180</td>
<td>Good</td>
<td>E</td>
<td>F</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>ELASTOMERIC/POLYMERIC</td>
<td>10-20</td>
<td>1</td>
<td>Easy</td>
<td>2 Hours</td>
<td>14 Days</td>
<td>High</td>
<td>N/A</td>
<td>>40</td>
<td>Excellent</td>
<td>G</td>
<td>G-F</td>
<td>F</td>
<td>G</td>
<td>Yes</td>
</tr>
<tr>
<td>URETHANE-BASED ACRYLIC</td>
<td>20</td>
<td>3/4</td>
<td>Very Difficult</td>
<td>1-7 Days</td>
<td>14-21 Days</td>
<td>Low to Medium ≤10%</td>
<td>Up to 5%</td>
<td>>40</td>
<td>Excellent</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>POLYURETHANE</td>
<td>20-30</td>
<td>3/4</td>
<td>Difficult</td>
<td>Remains slightly tacky until weathered</td>
<td>14-30 Days</td>
<td>High</td>
<td>N/A</td>
<td>>40</td>
<td>Good to Excellent</td>
<td>F-G</td>
<td>G</td>
<td>P</td>
<td>G</td>
<td>No</td>
</tr>
<tr>
<td>SILICONE</td>
<td>20-30</td>
<td>1</td>
<td>Easy</td>
<td>20-45 Minutes</td>
<td>1/2 to 1 Day</td>
<td>Very Low ≤1%</td>
<td>N/A</td>
<td>>40</td>
<td>20 to 250</td>
<td>Good</td>
<td>P</td>
<td>G</td>
<td>F</td>
<td>P-F</td>
</tr>
</tbody>
</table>

P=Poor F=Fair G=Good E=Excellent

* ASTM C794

The AWDI Core Guide to Installing Windows © 2014-15 AWDI, LLC Do not reproduce without permission
As the chart shows, this difference in expansion rate must be considered when joining a Vinyl Window to brick, or pine, or even aluminum, for example.

Some basic guidelines to follow:

1. **Oil based Butyls and Acrylics** will flex about 10% of their length. Add the movement of the joined materials and multiply by 10 for maximum joint width.

2. **Polysulfides and Polyurethanes** expand about 25%. Add the movement of the materials and multiply by 4 for joint width.

3. **Low and medium modulus Silicones** expand about 50%. Twice the material movement is a safe joint width.

4. **Silyl Modified Polymers (SMP)** One of the newest sealant technologies provides excellent adhesion and movement capabilities; good UV and heat stability, provides exceptional bonding to plastics, metals, wood and stone and can exceed ± 50% joint movement capability even in low temperatures. SMP's contain no solvent, contribute less VOC, and yield lower odors compared to other chemistries.

Which is Best?

Best is a relative term. With all the different types of materials that need to be caulked or sealed, it’s difficult to choose among the variety of brands and types of sealants. To decide which type of caulk or sealant will work best, it is better to look first at what caulks are supposed to do, and why most sealant failures occur. It’s important to know what properties a caulk will need to perform in a particular installation of a window or door. In simple terms, caulks are supposed to seal a joint between two materials so that air and moisture cannot penetrate the joint and this joint must stay sealed under variable weather conditions and even if the two materials move. Therefore, caulks must stick to the two surfaces, have elasticity to withstand movement, and must not deteriorate due to the environment.

To determine which is best for your application, consider the following:

1. Used inside or outside
2. Application and Service Temperatures
3. Materials to be joined

Tip: Overall, SMP's exhibit the best all around reliability, performance and service life closely followed by Silicones, Urethane-based acrylis and Polyurethanes.

Application is probably the most important part. The single most frequent cause of joint failure is in the application. Joints that are mis-matched as to width of substrates, joints that are narrow or thin, joints that are deep or at an angle, or joints that are three-sided need extra care. The illustrations show how basic some of the problems are and how to correct them. It is important to remember that the purpose of caulks and sealants is not to substitute for structural joining. No caulk or sealant will "tie" two materials together. They will only "seal" the joint against air or moisture penetration.

These guidelines are how to determine the joint size, but consideration must be given to surface preparation, adhesion, weather and UV resistance, and caulk shelf-life. To better explain, look at the diagrams. The three main causes of seal failure, regardless of proper width or flexibility are Adhesive Failure, Cohesive Failure, and Substrate Failure.

1. Adhesive Failure is the result of the caulk or sealant not sticking adequately to one of the substrates. This will happen if the movement exceeds the sealant’s capability, if the surface isn’t prepared properly, or if the bead isn’t carefully placed.

2. Cohesive Failure is the result of the sealant itself failing to hold together. Splits, tears, or other ruptures can occur if the sealant dries out, is over-stretched, deteriorates due to time and weather, or is improperly mixed or has entrapped air.

3. Substrate Failure occurs most often when there is inadequate surface preparation. The surface that fails probably needed to be sealed, scraped, or otherwise prepared to accept the sealant selected. Caulks and sealants fail because they don’t stick, won’t move, or they dry out, crack, or shrink.

The major considerations are Material Movement and Joint Design. The two materials being joined are subject to expansion and contraction due to temperature and moisture changes, and there may be movement due to use. It is necessary to design a joint that allows the movement without overtaxing the elasticity of the caulk.
Application: The mainframe of the new unit must be installed in the plumb, level, and square manner. Make sure loads from the wall above are not transferred to the window.

Shimming: All shimming should be done with the proper pressure to the mainframe of the newly installed window to guarantee the proper operation of the window sashes. The location of the shims will vary depending upon the window type, but there must be sufficient shims, properly located to minimize deflection of the frame or sill.

The shims should be made of a material that is hard enough to support the window, provide good thermal insulation, resist decay, and allow for fastening to run through.

Caulking:
1. Replacement: Use caulking during mounting of replacement vinyl windows as follows:
 - Inside/Out Application- Apply caulk to the back of the exterior stop, and under the sill when the newly installed window is mounted against the exterior stop.
 - Outside/In Application- Apply caulk to the back of the interior stop, and under the sill when the newly installed window is mounted against the interior stop.

2. Renovation & New Construction: Caulking is not recommended for use during renovation or remodeling installation. Instead, the following describes the proper methods for perimeter sealing and weatherstripping.

Insulation: After the new vinyl window is mounted in the opening, use fiberglass insulation, or equal to insulate any perimeter voids between the mainframe of the new window, and the opening. The insulation should never be compressed into the void(s) in a manner that lessens its insulation effectiveness. Also, compression of the insulation could exert pressure on the frame of the new window that will distort the frame, which could impede smooth operation of the new window. It is also recommended that a proper air seal on the warm side of the insulation be provided.

Interior Air/Moisture Seal: It is recommended that an air and moisture seal be provided on the interior side of the rough opening gap using sealant, or Barrier Tape. To prevent drafts, heat loss, and further reduce the potential for the formation of condensation between the wall and the new window, it is essential that the rough opening gap doesn’t allow air and moisture to pass between the new window and the existing wall into the opening cavity.

1. Sealant Method: Apply Caulk/Sealant to the interior side of the rough opening in a continuous manner to provide an even, unbroken sealant bead sufficient to fill the gap between the new window and the rough opening. Where needed, foam or rubber backer rod can be used as a “bond breaker” ensuring that the sealant only bonds to the window frame and the rough opening. The rod should be pushed in a distance equal to about one half the width of the joint, and sealant should be applied over the rod until flush with the inside of the new window, as shown.

2. The Barrier Tape Method: Tape that is impermeable to air and moisture, with adhesive of sufficient strength to adhere to wood, vinyl, metal, or plastic shall be placed across the rough opening gap adhering to the dry wall on one side of the gap, and the interior surface of the window frame on the other, or between the new window frame and the left-in-place frame.
Header Drip Cap: At the head of the window, a drip cap should be installed from under the sheathing paper at the header, to beyond the exterior face of the window. It should also extend past the trim at the sides of the window. Install a continuous piece of aluminum or galvanized flashing material onto the building sheathing, tucked under the sheathing paper, with a 90 degree bend to extend over the new window’s header. A 1/4” return bend is applied down the face of the window’s header. To finish, the siding veneer will overlap the header flashing.

Capping: Wherever possible, cover and seal the existing opening frame, and/or the cavity created between the newly installed window and the building veneer with properly installed capping materials.

Capped Installations should have the capping materials integrate or seal to the perimeter of the newly installed window or door in an air and water-tight manner. Capping should be installed in such a manner to allow ventilation and moisture to escape from under the capping.

For non-capped Installations, use suitable sealing materials and procedures to create a weather-tight seal between the newly installed window mainframe, and the opening into which it is installed.

Sealing: Apply caulking where capping profiles abut one another, but do not overlap. For non-capped installations, sealant should be applied between the exterior window frame and the building face. It is recommended that the sealant be applied to the sheathing.

For a brick veneer and a non-capped installation, apply sealant between the window capping and the brick. It is recommended to apply the sealant using backer rod as previously discussed.
Capping and Vapor Barrier Continuity

NOTE: Illustration is for reference only. Actual profile of window and installation conditions may vary.

Vapor Barriers are usually violated when new windows are installed.
Moisture laden air is allowed into the cavity between the rough opening framing and the new window frame. Allowing moisture into the cavity can cause rot, mold or other degradation of the installation and lower the thermal performance of the new window unit.

NOTE: Vapor Barriers for all climates other than defined as “Humid” by ASHRAE (the Coastal Regions of Louisiana, S. Carolina, Georgia, and Florida,), Vapor Barriers are recommended on the interior, or “warm side” of the building wall.
Picking the Proper Sealant

AWDI understands that the application of a sealant is as crucial as the choice of sealant. When a bead of sealant is applied to a joint there are severable factors to consider:

- Adhesion
- Flexibility
- Durability
- Compatibility
- Temp, Weather, Exposure
- Aesthetics

Within these three performance aspects there are countless combinations of applications, substrates and conditions a sealant is exposed to.

Bedding Joints:
For bedding joints, it is especially important that the sealant meet AAMA 800-802, and is of the right consistency and made up of 100% solids so it will not shrink after cure, unlike solvent and latex based sealants that shrink and create gaps after curing.

Fillet Joints:
A fillet joint is formed when two surfaces come together to form a right angle. The sealant used to join these two surfaces is triangular in shape. The sealant must adhere to the variety of substrates you’re faced with. Without strong adhesion there is a high chance that the sealant will pull away from the substrate allowing for air and water infiltration.

Control Joints:
A control joint is formed when two similar or dissimilar materials meet or when substrates do not form a right angle. This joint will require both a backer rod and sealant for proper application. This joint can be as wide as 5/8 inch and be prone to extreme movement, a highly flexible sealant is necessary for a reliable seal with this application. In order to successfully install a window or door and effect a lasting weathertight seal, a good choice is a sealant that meets AAMA 800-802 for proper adhesion to the common building materials.

Desired Properties

- No Shrinkage
- Locks out air and water infiltration to protect integrity of the seal
- Proven Wet Surface Application
- Ability to use the same sealant in warm and cold temperature situations to produce consistent results. 0F – 140F cold and warm weather application
- Strong Adhesion / All Surfaces will stick to even the most difficult to bond building materials
- 5X stretch, 50% joint movement Long term durability assurance even with expansion and contraction of building materials
- 24 hour fast cure, paintable 1 HR. Fast cure to protect the building structure from outside forces and quick paintability saves time
- Achieves bubbling resistance faster to ensure optimal aesthetics
- Plenty of Color Matches to offer perfect color match to all primary building materials
- Dirt & Dust Resistance ensures optimal visual appeal long after an installation
- UV Resistance
- Long term durability to compliment the durability of the building structure

AWDI recommends an ASTM C920, Class 50 sealant that is designed for exterior/interior use for sealing around windows, siding and doors. Quality sealants like bond best to a wide variety of materials and their versatility in performance provides valuable features and benefits for all installers.
Spray Foam Insulation

While the term “Spray Foam” is often widely used in construction, there are two different types and each has its advantages and disadvantage.

Spray foam has been shunned by window installers and manufacturers over the years because foams, in the past, have either continued to expand after trim has been applied deform the more pliable vinyl window frames, or because they have been over used to fill the gaps left when old windows are removed and the underlying rough opening has been exposed.

Make sure the foam you use has been tested to industry standards and is labeled conforming to standards as a low expansion, low pressure foam.

Most standards applying to window installation do not delineate between open cell foam and closed cell foam, the more popular “minimal expansion” foams are most frequently used and they are mostly closed cell. More confusing yet, is when foams are recommended, the compressed foam tape alternatives are called out to be open cell.

When it comes to Spray Foams, it helps to understand the differences. Open-cell spray foam (ocSPF) has a cell structure where the cells are filled with air. The open-cell structure renders soft, flexible foam, with a density of about 0.5-0.8 pounds per cubic foot (pcf).

The R-value per inch of open-cell foam typically ranges from R3.6 to R4.5 per inch. Unlike fiberglass and cellulose, the fine cell structure of ocSPF makes it air-impermeable at certain thicknesses. The air-impermeability of ocSPF qualifies it as an air-barrier material, dramatically reducing air leakage through the building envelope, significantly lowering the building’s heating and cooling costs. However, ocSPF, like fiberglass and cellulose insulations, is moisture-permeable, and may require the installation of a vapor retarder in colder climates.

Closed-cell spray foam (ccSPF) has a closed cell structure which yields rigid hard foam, with a density of 1.8-2.3 pound per cubic foot (pcf), and can provide structural enhancement in certain framed buildings. The smaller cells trap insulating gas from the curing, which has a lower thermal conductivity than still air, and increases the R-value to anywhere from R5.8 to R6.9 per inch.

Like ocSPF, ccSPF is also air impermeable at certain thicknesses and can qualify as an air-barrier material. The bigger benefit is that the closed-cell structure of ccSPF also makes it water-resistant, and is the only spray foam that can be used where contact with water is likely.

At a thickness of 1.5 inches, no additional vapor retarder is required for most applications.

Desired Properties

- Industry tested and labeled as a Low Pressure/Low Expansion; i.e., will not warp or deform windows & doors
- Quick Setting Formulation: can be cut or trimmed in less than 1 hour
- Cold Temperature Application: can be applied in temperatures as low as 14F
- Insulation Value of R5: makes it an efficient method for stopping air and moisture infiltration
- Remains Flexible Once Cured: will not crack or dry out

Note: Be careful, shims can present a problem as they extend through the cavity and can allow water and air infiltration. Foam Tape used outside like backer rod can seal the opening and conform to the contours while allowing drainage.
Using Spray Foam

For the best installation, it is necessary for the gap around the window or door to be sealed to block out air, water and vapor penetration. ccSPF can do that well if selected and used properly. Improper use can create water traps, impede drainage and exert excessive pressure to the window frame during expansion.

Remember: Vapor barriers need to be applied on the warm side of the opening. Double vapor barriers (one on the warm side and another on the cool side) encourage condensation between and will trap the resulting condensation. Also, window installation cavities (the space between the window frame and the rough opening, or left-in-place old window frame) need to “breathe” to the outside, and allow drainage of collected water to the outside.

AWDI recommends ccSPF Foam which is a polyurethane closed cell, low pressure/low expansion sealant to fill the gaps as protection against moisture and air. OSI’s closed cell foam also achieves a thermal performance of R5 per inch.

Application

Foam can be applied using a Foam Applicator Gun, or a small can with “straw type” nozzle tip. The flexible tip from gun or can equally allows for more precise application. This gun offers a rear valve used to control the size of bead applied into the openings. The valve also allows the life of the foam to be extended by closing the opening of the barrel for future use.

For even smaller openings, a detachable screw on top is included with the gun to be able to fill gaps as small as 1/8” wide.

Important tips:

- Similar to the sealant gun, it is critical that you balance the movement of the foam gun or straw barrel and how you dispense the foam so that the foam makes contact with both the rough or existing window frame and replacement window frame.

- If the dispensed foam does not make contact with both the rough frame and the window frame, there won’t be an adequate bond to seal out water and air.

- Industry Standards suggest application of 1 inch beads, separated by an equal space. Be careful not to create two vapor barriers – one at the exterior and one at the interior. Make sure there is the ability for the opening to breathe to the cold side for drying and drainage. Use backer rod about one inch in the sill as a stop to make a workable back dam.

- When applying foam around the perimeter of the window or door, you must maintain a minimum depth of 1 inch. This depth is required to provide the correct thermal performance, to help improve energy savings, and to protect against condensation problems.

- When applying foam as a back dam to the gap between the window frame and the rough sill, do not allow the foam to extend to the exterior edge of the opening. Maintain a minimum of a 1 inch gap between the foam and the exterior edge of the rough sill. If foam fills this gap at the sill, any water from leakage will not be able to drain to the drainage plane or exterior cladding surface. Place backer rod the length of the sill, 1” from edge and use it as a back dam guide.