Installing Curved and Angled Windows

Although all possible measures have been taken to insure the accuracy of the material presented, WIXSYS, and the author are not liable and do not assume any liability in case of misinterpretation of directions, misapplication, improper installation, or typographical error.
Installing Curved and Angled Windows

Vinyl Windows are made in more than just rectangular configuration. There are many choices of architectural shapes - round, half-round, quarter-round, ovals, hexagons, octagons, trapezoids, and triangles. In fact, almost any shape can be ordered. These odd shapes can add design flexibility to a replacement or remodeling project, and they are especially useful because they can fit into the most unlikely places such as cramped stairwells and shallow attics. These window types generally don’t have operating sash and they do not provide ventilation, but besides the decorative addition they make when used in combination with other windows, these special shapes, when used alone, can provide light in dark places, and their shapes will also add charm or traditional elegance.

Because they are shaped differently than rectangular windows, special architectural shapes require some modification to standard installation instructions.

The following tips and illustrations are meant as guides to determine the best way to proceed. Once you have decided on the type of shape you want, consult your dealer or manufacturer for specific recommendations and available options for installation.

Installing Special Shapes

Special Shapes can be installed in two basic ways. If these shapes are ordered with a conventional double-hung, slider, or casement/awning type window, it may be possible to install them mulled together with the rectangular window.
If the special shape is ordered to be installed alone, then modified, conventional framing methods need to be used.

Because of the variety of shapes that are possible, standardized instructions are not really possible, or practical to follow.

Circular windows are braced differently than oval windows, and angular windows are braced a third way. In fact, the only basic, common feature with special shapes is the need for jamb extensions to fit them to the interior wall.

If these extensions must be cut from wallboard or wood it will require more skill than most amateurs have.

The good news is that some manufacturers make pre-formed jamb extensions that snap-in to the groove provided for the snap-in mull strips.

Using a hair dryer to warm the vinyl, this extension system can be bent to accommodate curved windows as well.

1. Special shapes, whether mulled or separate, must be installed in a clear opening with the old window (sash and frame) completely removed.

2. Integral fin should be used on special shapes as a nailing anchor and to create a self-flashing installation.

3. All windows, rectangular, curved, or otherwise require a proper sized header above the window to support the studs above.

4. All odd-shaped windows require similar studding to a conventional rectangular window opening.

5. A Drip Cap, formed by shaping aluminum or vinyl J-channel (fan-cut for curved windows) should be installed above all windows over proper flashing.

Flashing Curved Windows

Step 1

Take care that the sheathing is applied with the correct arc and that the proper support for the curved window is in place.

Too often it is cut or formed haphazardly and the resulting gaps invite leaks no matter how well the opening is flashed.

Step 2

Just as you would in a rectangular opening, the sill flashing is applied across the bottom and slightly up the sides. Make sure it extends past the sides of the opening.

Place a bead of caulk on the sheathing or behind the nailing flange.

Caulk across the bottom leaving two gaps for drainage.

Step 3

Place the window in the opening. Nail just enough to anchor it to the opening, but not too much to deform the nailing fin and allow the window to slightly expand and contract.

Do not nail across the bottom.

Step 4

Cut three pieces of flashing and apply them in overlapping sequence over the nailing flange.

Apply top piece last.

Use flexible uPVC or carefully notch aluminum to make a drip cap if needed.
Picking the Proper Sealant

AWDI understands that the application of a sealant is as crucial as the choice of sealant. When a bead of sealant is applied to a joint there are severable factors to consider:

- Adhesion
- Compatibility
- Flexibility
- Temp, Weather, Exposure
- Durability
- Aesthetics

Within these three performance aspects there are countless combinations of applications, substrates and conditions a sealant is exposed to.

Bedding Joints:
For bedding joints, it is especially important that the sealant meet AAMA 800-802, and is of the right consistency and made up of 100% solids so it will not shrink after cure, unlike solvent and latex based sealants that shrink and create gaps after curing.

Fillet Joints:
A fillet joint is formed when two surfaces come together to form a right angle. The sealant used to join these two surfaces is triangular in shape. The sealant must adhere to the variety of substrates you’re faced with. Without strong adhesion there is a high chance that the sealant will pull away from the substrate allowing for air and water infiltration.

Control Joints:
A control joint is formed when two similar or dissimilar materials meet or when substrates do not form a right angle. This joint will require both a backer rod and sealant for proper application. This joint can be as wide as 5/8 inch and be prone to extreme movement, a highly flexible sealant is necessary for a reliable seal with this application. In order to successfully install a window or door and effect a lasting weathertight seal, AWDI recommends an ASTM C920, Class 50 sealant such as premium.

DYNAFLEX® from DAP as a good representative to seal the exterior joints of windows and exterior finish materials. The best choice is a sealant that meets AAMA 800-802 to assure proper adhesion to the most common building materials and that is compatible with WRB and flashing tapes; and can be used in a wide temperature range and wet surfaces.

Desired Properties

- No Shrinkage
- Locks out air and water infiltration to protect integrity of the seal
- Proven Wet Surface Application
- Ability to use the same sealant in warm and cold temperature situations to produce consistent results. 0F – 140F cold and warm weather application
- Strong Adhesion / All Surfaces Will stick to even the most difficult to bond building materials
- 5X stretch, 50% joint movement Long term durability assurance even with expansion and contraction of building materials
- 24 hour fast cure, paintable 1 HR. Fast cure to protect the building structure from outside forces and quick paintability saves time
- Achieves bubbling resistance faster to ensure optimal aesthetics
- 4,600 + Color Matches ensures perfect color match to all primary building materials
- Dirt & Dust Resistance ensures optimal visual appeal long after an installation
- UV Resistance
- Long term durability to compliment the durability of the building structure
Spray Foam Insulation

While the term “Spray Foam” is often widely used in construction, there are two different types and each has its advantages and disadvantage.

Spray foam has been shunned by window installers and manufacturers over the years because foams, in the past, have either continued to expand after trim has been applied deforming the more pliable vinyl window frames, or because they have been over used to fill the gaps left when old windows are removed and the underlying rough opening has been exposed.

Make sure the foam you use has been tested in accordance with AAMA 812 and meets standard for low pressure development.

Most standards applying to window installation do not delineate between open cell foam and closed cell foam, the more popular “minimal expansion” foams are most frequently used and they are mostly closed cell. More confusing yet, is when foams are recommended, the compressed foam tape alternatives are called out to be open cell.

When it comes to Spray Foams, it helps to understand the differences. Open-cell spray foam (ocSPF) has a cell structure where the cells are filled with air. The open-cell structure renders soft, flexible foam, with a density of about 0.5-0.8 pounds per cubic foot (pcf).

The R-value per inch of open-cell foam typically ranges from R3.6 to R4.5 per inch. Unlike fiberglass and cellulose, the fine cell structure of ocSPF makes it air-impermeable at certain thicknesses. The air-impermeability of ocSPF qualifies it as an air-barrier material, dramatically reducing air leakage through the building envelope, significantly lowering the building's heating and cooling costs. However, ocSPF, like fiberglass and cellulose insulations, is moisture-permeable, and may require the installation of a vapor retarder in colder climates.

Closed-cell spray foam (ccSPF) has a closed cell structure which yields rigid hard foam, with a density of 1.8-2.3 pound per cubic foot (pcf), and can provide structural enhancement in certain framed buildings. The smaller cells trap insulating gas from the curing, which has a lower thermal conductivity than still air, and increases the R-value to anywhere from R5.8 to R6.9 per inch.

Like ocSPF, ccSPF is also air impermeable at certain thicknesses and can qualify as an air-barrier material. The bigger benefit is that the closed-cell structure of ccSPF also makes it water-resistant, and is the only spray foam that can be used where contact with water is likely.

At a thickness of 1.5 inches, no additional vapor retarder is required for most applications.

Desired Properties

- Make sure the foam used has been tested in accordance with AAMA 812 and meets standard for low pressure development.
- Quick Setting Formulation: can be cut or trimmed in less than 1 hour
- Cold Temperature Application: can be applied in temperatures as low as 14F
- Insulation Value of R5: makes it an efficient method for stopping air and moisture infiltration
- Remains Flexible Once Cured: will not crack or dry out
Using Spray Foam

For the best installation, it is necessary for the gap around the window or door to be sealed to block out air, water and vapor penetration. ccSPF can do that well if selected and used properly. Improper use can create water traps, impede drainage and exert excessive pressure to the window frame during expansion.

Remember: Vapor barriers need to be applied on the warm side of the opening. Double vapor barriers (one on the warm side and another on the cool side) encourage condensation between and will trap the resulting condensation. Also, window installation cavities (the space between the window frame and the rough opening, or left-in-place old window frame) need to “breathe” to the outside, and allow drainage of collected water to the outside.

Used wisely, ccSPF can be the best solution. AWDI recommends DAP® DRAFTSTOP 812 Window and Door foam. DAP® DRAFTSTOP 812 also achieves a thermal performance of R-5 per inch.

Application

DAP DRAFTSTOP Foam is applied using a Foam Applicator Gun. This foam and gun combination allows for more precise application than the straw grade foam alternative. This gun offers a rear valve used to control the size of bead applied into the openings. The valve also allows the life of the foam to be extended by closing the opening of the barrel for future use.

For even smaller openings, a detachable screw on top is included with the gun to be able to fill gaps as small as 1⁄4” wide.

Important tips:

- Similar to the sealant gun, it is critical that you balance the movement of the foam gun or straw barrel and how you dispense the foam so that the foam makes contact with both the rough or existing window frame and replacement window frame.
- If the dispensed foam does not make contact with both the rough frame and the window frame, there won’t be an adequate bond to seal out water and air.
- Industry Standards suggest application of 1 inch beads, separated by an equal space. Be careful not to create two vapor barriers - one at the exterior and one at the interior. Make sure there is the ability for the opening to breathe to the cold side for drying and drainage. Use backer rod about one inch in the sill as a stop to make a workable back dam
- When applying foam around the perimeter of the window or door, you must maintain a minimum depth of 1 inch. This depth is required to provide the correct thermal performance, to help improve energy savings, and to protect against condensation problems.
- When applying foam as a back dam to the gap between the window frame and the rough sill, do not allow the foam to extend to the exterior edge of the opening. Maintain a minimum of a 1 inch gap between the foam and the exterior edge of the rough sill. If foam fills this gap at the sill, any water from leakage will not be able to drain to the drainage plane or exterior cladding surface. Place backer rod the length of the sill, 1” from edge and use it as a back dam guide.